

Lessons Learned from the Colorado Marshall Fire Part 2 _{Oct 2, 2024}

Robby Schwarz

Shawn LeMons

Topics To Cover

□ Big Picture Thoughts

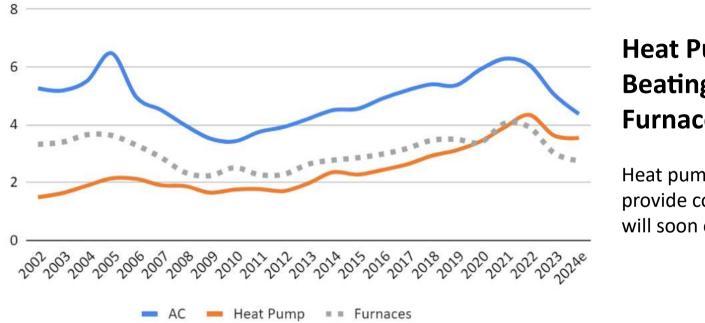
□ ASHP Basics

□ ccASHP Examples

□ Specs & Field Data

□ Panel Upgrade?

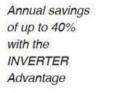
Joe P's home (Fraser, CO) "Installed 2015 and operates below -30°F"

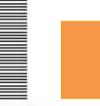

Not talking about "those" heat pumps

HVAC Equipment Changes

AHRI Sales (mil. units)

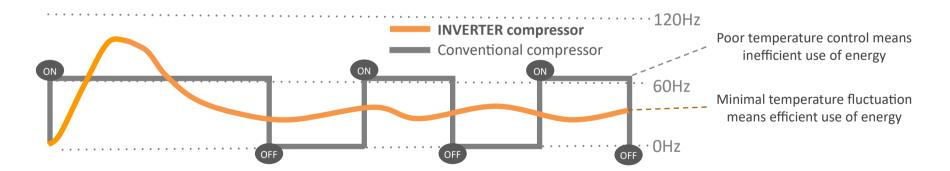
Heat Pumps Beating **Furnaces**


Heat pumps also provide cooling, and will soon overtake ACs


Efficiency, Durability, Comfort

Inverter-Based Heat Pumps

Variable-speed compressors use less energy to meet the actual load for the space at that time.


POWER CONSUMPTION

CONVENTIONAL

INVERTER

The Goldilocks Principle

Too Small

System will not keep the house at setpoint when it should

- Backup heat needed?
- Slow recovery with t-stat setback
- Poor durability
- Poor energy efficiency

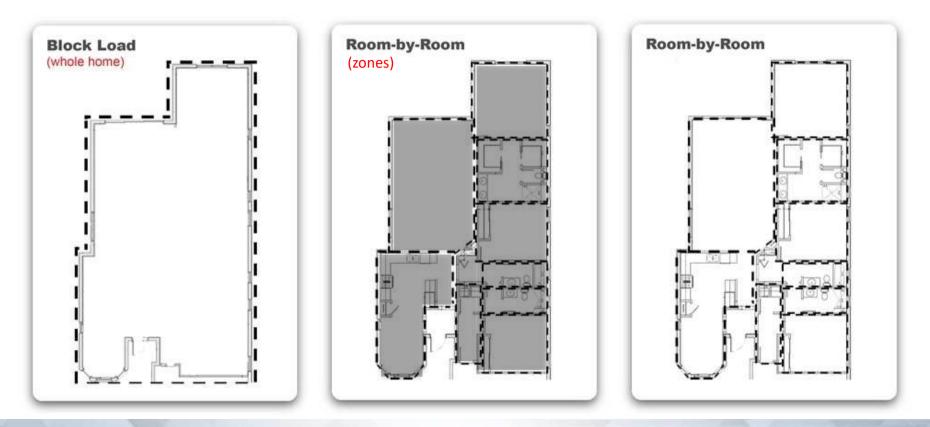
- Just Right!
- Comfort
- Efficiency
- Durability

Too Big

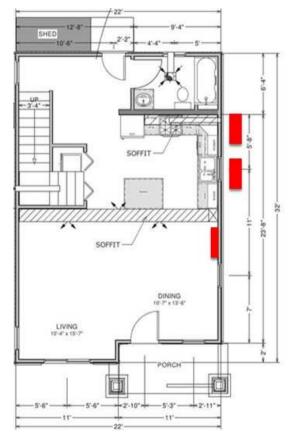
System will cycle on and off more than needed

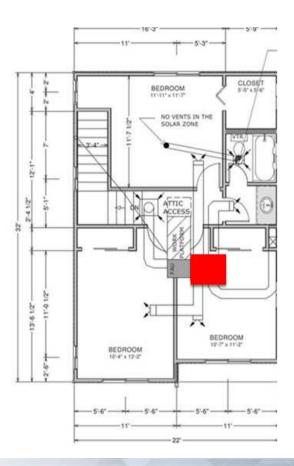
- Poor comfort
- Poor energy efficiency
- Poor durability
- More expensive

Equipment Options & Zones


Multi-Zone (ported)

Multi-Zone (branch box)


Equipment Options & Zones



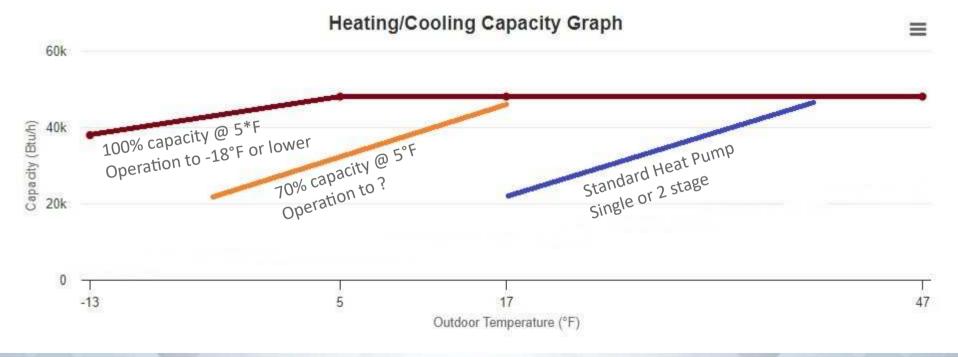
Residential HVAC Design Process

Ductless or Ducted or Both?

- Zoning, floor by floor
- Match the heat & cool load for smaller spaces
- Efficiency, comfort, & air quality
- Redundancy

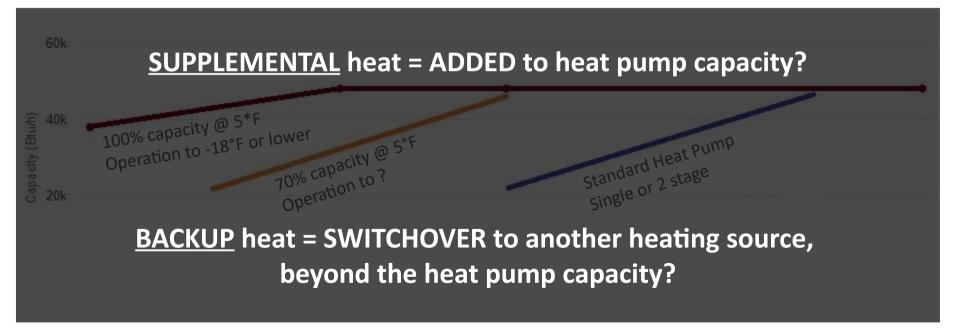
Cold Climate ASHP Specs

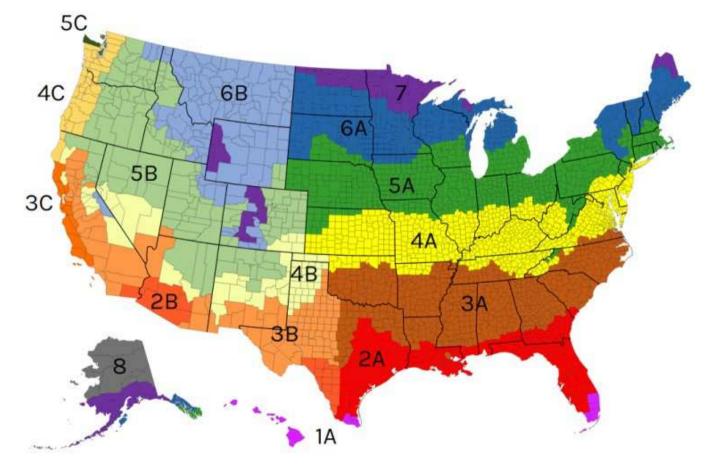
Not all cold climate heat pumps are created equal


	CEEM.	Energy STAR	ne ep	
	CEE North, High Tier	Energy Star Cold Climate	NEEP	Manufacturers
Rated at 47°F & 17°F	1	1	1	\checkmark
SEER2 ducted, ductless	15.2, 16.0	15.2, 15.2	14.3, 15.0	\checkmark
EER2 ducted, ductless	10.0, 9.0	N/A	1	\checkmark
HSPF2 (Reg IV) ducted - ductless	8.1, 9.5	8.1, 8.5	7.7, 8.5	\checkmark
Capacity ratio at 5°F	58% or 70%	70%	1	up to 100+%
COP at 5°F	1.75	1.75	1.75	✓
Capacity at -13°F or colder			1	Some
Additional specs	ener	ener	3+ speeds	
Specification Link	<u>CEE Res HVAC 1</u> / <u>1/23</u>	CAC & HP v6.1 J an-2022	<u>ccASHP v4.0 1/1</u> /2023	

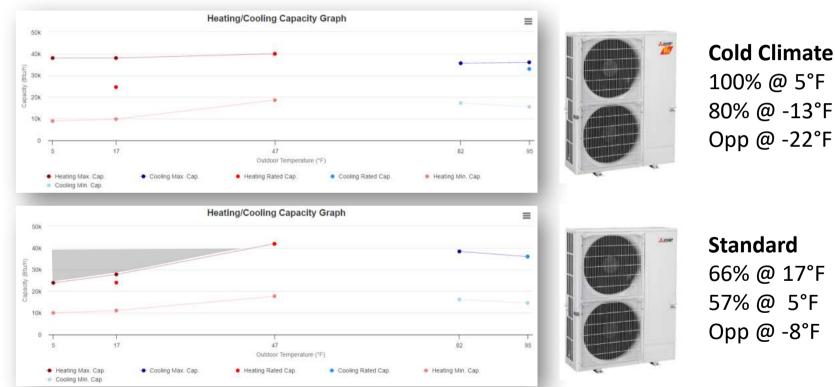
Air to water heat pumps are not yet rated per these agencies.

Cold Climate ASHP Specs


Cold climate heat pumps are purpose-built for cold weather


Cold Climate ASHP Specs

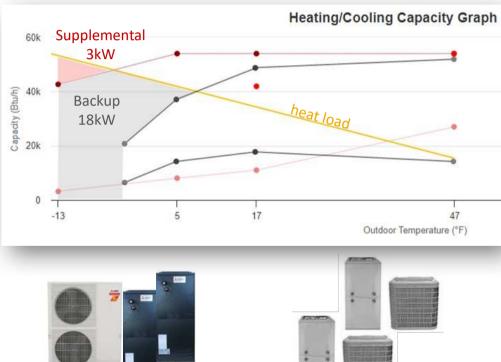
When do you need...


Cold Climate ASHP Locations?

Double Check The Specs

Both are on the NEEP ccASHP list. Which one is right for the house?

https://neep.org/heating-electrification/ccashp-specification-product-list


Double Check The Specs

Which is right for the client?

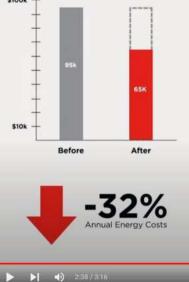
Multizone + 2 duct systems

23 SEER, 12 HSPF 54 kBTU/h @5°F <mark>COP 1.9 @5°F</mark>

- 3kW heat strip below -4°F
- Heat pump to -24°F
- Maintains efficiency
- 65A total breakers (50A+15A)
- Supplemental

Two high efficiency ducted heat pumps

24 SEER, 13 HSPF 39 kBTU/h @ 5°F <mark>COP 2.48 @5°F</mark>

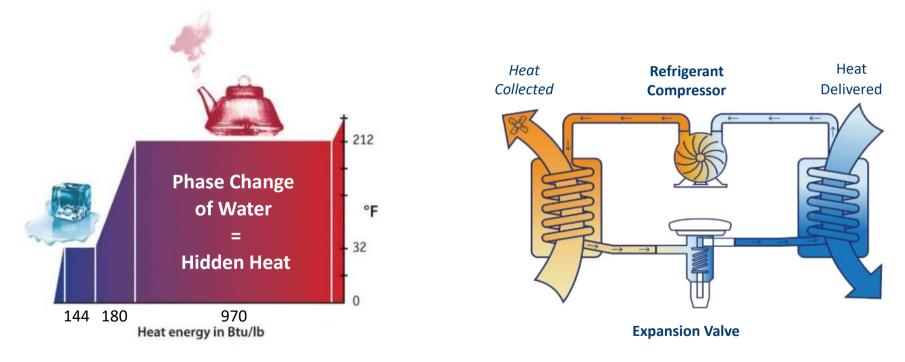

- 18k heat strip below 9°F
- Heat pump to -4°F
- Efficiency plummets
- 190A total breakers (2x30A, 2x15A, 2x50A)
 BACKUP

The RIGHT heat pumps work when its cold

Ontonagon, MI 60 unit, 15 bldgs.

"25°F below zero

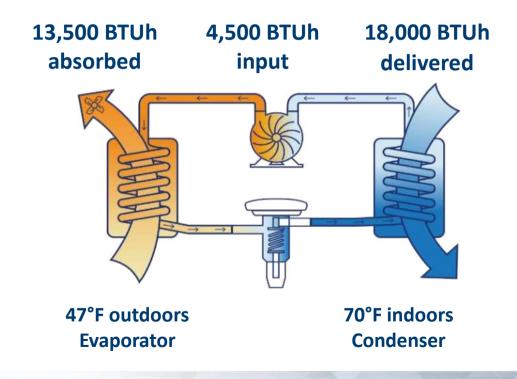
temperatures and not a single tenant had any issue or even needed to turn on their electric resistance as backup." Decrease in Annual Energy Cost



Project Profile: Ontonagon Village Housing

How Heat Pumps Work

Heat pumps use phase change to move heat



They manage temperature and pressure of the boiling point of refrigerants

Rated capacity @ 47°F

18,000 BTU / 3.412 BTU/W / **4.0 COP**

= 1320 Watts input

13,500 BTUh from air <u>+ 4,500</u> BTUh from compressor = 18,000 BTUh delivered

18,000 / 4,500 = 4 COP

100% capacity @ 5°F

18,000 BTU / 3.412 BTU/W / **2.0 COP**

= 2640 Watts input

9,000 BTUh 9,000 BTUh 18,000 BTUh absorbed input delivered 5°F outdoors 70°F indoors Condenser **Evaporator**

9,000 BTUh from air <u>+ 9,000</u> BTUh from compressor = 18,000 BTUh delivered

18,000 / 9,000 = 2 COP

70% capacity @ 5°F

12,600 BTU / 3.412 BTU/W / **2.5 COP**

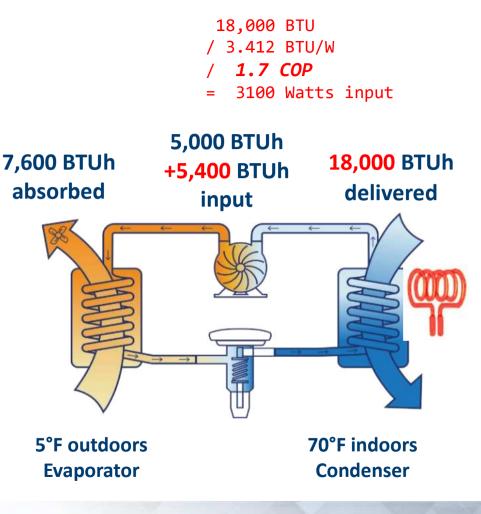
= 1480 Watts input

7,600 BTUh 5,000 BTUh 12,600 BTUh absorbed input delivered 5°F outdoors 70°F indoors Condenser **Evaporator**

7,600 BTUh from air + 5,000 BTUh from compressor = 12,600 BTUh delivered

12,600 / 5,000 = 2.5 COP

70% capacity @ 5°F


7,600 BTUh from air

- + 5,000 BTUh from compressor
- = 12,600 BTUh delivered
- + 5,400 BTUh electric supplemental

= 18,000 BTUh total

18,000 / 10,400 = **1.7 COP**

How cold does it operate? Do you need full backup?

The RIGHT Heat Pump - Winter


5500 Watt hrs avg x 3.412 BTU/W x **2.0 COP** = 37,500 BTU/h avg

4T ccASHP + 2 duct systems 200 amp SPAN panel

-18°F @ 8am 12/22/2022 Design temp 0°F 3700 sf home, 46 kBTU/h load

Max ampacity 42A (10 kW)
Stayed below 25A (6 kW)

Averaged 23A (5.5 kW)

The RIGHT Heat Pump - Summer

1420 Watt hrs avg x 3.412 BTU/W x **3.2 COP** = 15500 BTU/h avg

2.5T ccASHP + 1 duct system 100 amp panel

97°F @ 3pm, July 24, 2023 Design temp 95°F 1700 sf home, 20 kBTU/h load

- 1.8 kW for 14 mins
- 1.3 kW for 90+ mins
- O.2 kW net w/ solar PV
- Avoided peak summer rates
- Max ampacity 24A (5.8 kW)
 Stayed below 8A (1.9 kW)
- Averaged 5.9A (1.4 kW)

Also fully heats this home in winter



100A Breaker Panel Study

NEC 220.87 – Existing Loads Connected Load Study

- Max demand over 1-year period
- Max demand at 125% plus new load
- Overcurrent / Overload protection per 240.4 and 230.90
- <u>Exception</u> Record max demand in 15-minute intervals continuously over 30-days minimum, occupied space and include largest loads

100A Breaker Panel Study

Almost All-Electric Home + EV ENERGY MONITORING

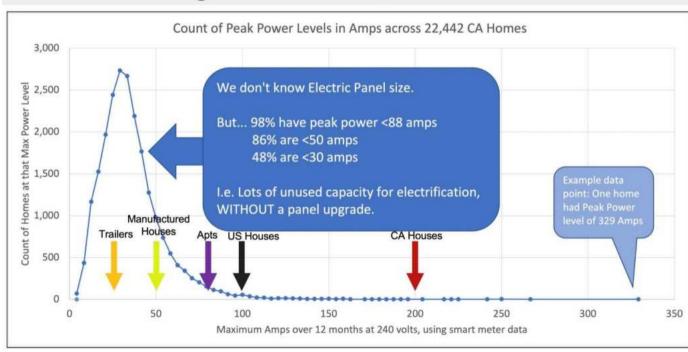
B#		Bus A	Bus B		B#
1		А	В	Whole	2
3	Range A	40	В	Home	4
5	Range B	40	A	Surge	6
7		В	А	Protector	8
9	Furnace	15	15	LR, Bsmt Lt, Entry Lt	10
11	Hall Closet	20	30	EV, Dryer B	12
13	Micro, Gar, Bsm, Lav	15	30	EV, Dryer A	14
15	Kit E, Fridg	20	30	Heat Pump A	16
17	Kit W, GFI	20	30	Heat Pump B	18
19	MBR, Loft, Kit Lt	15	30	Solar B	20
21	Bed2, Ba, MClos	15	30	Solar A	22
23	Disposal	20	15	spare	24

100A Breaker Panel Study

15 min data per NEC 220.87 over 23 months (64,600 periods)

Max Amps, Emporia	49.4	47.3	47.2	13.0	4.5	15.4	10.5	6.3	6.2	5.3	3.7	25.9	22.7
Max Watts	10977	5681	5665	3119	539	1846	1262	756	745	636	447	6206	5453
>90% of max	9	6	3	5	2	4	2	3	1	2	10	1070	11
	0.01%	0.01%	0.00%	0.01%	0.00%	0.01%	0.00%	0.00%	0.00%	0.00%	0.02%	1.66%	0.02%
>50% of max	2296	2238	1808 <	<50	Am	ns r	nax	57	min	utes	336	8407	818
	3.6%	3.5%	2.8%	0.3%	20.4%	0.9%	0.1%	0.9%	0.0%	0.0%	0.5%	13.0%	1.3%
Time Bucket	Total kW	Vue2_A(Vue2_B (Stove 1,3	Furnace	Micro,Ga	Kit-e Frig	Kit-w GF	MBR, Lot	Bed2, Ba	LR, Bmt	EV, Drye	ASHP 16
11/18/22 21:00	11.0	5.7	5.3	0	0.3439	0.0556	0.02	0.0218	0.0026	0.0101	0.1034	5.7941	4.8698
1/25/24 6:15	10.6	5.448	5.145	0	0.3451	0.0563	0.0002	0.0169	0	0.0236	0.0327	5.7993	4.5324
11/17/22 6:30	10.4	5.4	9	nor	ind	c 99371	thin	an	% of	m^{5}	V 0413	5.7811	4.3543
11/17/22 6:15	10.1	5.2	, L	hei	IQU.		C 0.0026	20	/0 _{.0} Q1	d.db1C	A .0411	5.7616	4.0272
1/25/24 5:15	10.0	5.1451	4.902	0	0.3428	0.0573	0.0844	0.0165	0	0.0052	0.0324	5.8029	3.9169
1/11/23 23:45	9.9	4.2	5.7	0.006	0.3417	1.5578	0.0152	0.023	0.0088	0.007	0.035	5.1592	2.7214
1/26/23 4:15	9.9	5.1	4.8	0	0.3407	0.0561	0.0344	0.0169	0.0029	0.0249	0.0334	5.8054	3.8106
1/26/23 6:15	9.9	5.1	4.8	0	0.2822	0.0595	0.0212	0.017	0.003	0.0044	0.0334	5.781	3.9234
1/26/23 5:15	9.9	5.1	4.8	0	0.3409	0.0564	0.0283	0.0169	0.0026	0.017	0.0334	5.8008	3.8172
1/26/23 3:00	9.9	5.1	4.8	0	0.3434	0.0565	0.0232	0.0171	0.0028	0.025	0.0336	5.8543	3.7307

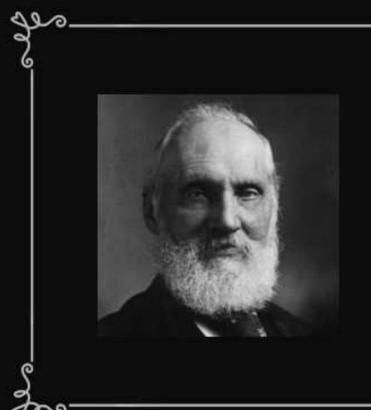
Panel Sizing


400 Amp service panel?

... says who? ... and why?

Check their assumptions

Panel Sizing


Is 100A Enough Power? Yes, for 98% of Households

HOME ENERGY ANALYTICS

"Our analysis shows there is much greater panel capacity than has been commonly assumed."

Is a Panel Upgrade NEEDED?

If you can not measure it, you can not improve it.

~ Lord Kelvin

AZQUO

Big Changes in 14 Years



1935

10% Farms with Electricity 1949

70% Farms with Electricity

Big Changes in 45 Years

Robby Schwarz

Thank You!

#heatpumpnation
#betterHVAC

Shawn LeMons