

Energy & Environmental Building Alliance

PUMP UP THE AIR FLOW Get Your Heat Pumps Commissioned

Dan Wildenhaus

Senior Technical Manager - Training and Consulting Services, Center for Energy & Environment

Bill Graber Partner, The Energy Conservatory

Presenters

Dan Wildenhaus

Senior Technical Manager -Center for Energy & Environment As a Technical Advisor, trainer, and consultant for residential, multifamily, and small business programs Dan has completely immersed in the discussion of what is required to create High Performance Buildings and the technologies that operate within them.

A former contractor, Dan currently provides Decarbonization and HVAC consultation, technical management, market channel development, and training and presentation services for a variety of programs across the country.

Bill Graber

The Energy Conservatory Bill is a partner at TEC, joining in 2019. He previously worked at Emerson on pressure and flow measurements for over 25 years in engineering, business development, and strategic planning roles.

Bill has 3 patents related to flow measurement and holds a B.S. in Mechanical Engineering and an MBA from the University of Minnesota.

Learning Objectives

- 1. Prioritize which performance tests make sense to pursue on every project.
- 2. The difference between ENERGY STAR contractor requirements and a HERS Rater.
- 3. Have an outline of what the first skills your staff and trade partners should learn to quickly contribute to heat pump success.
- 4. Top 5 things to communicate to a homeowner about heat pumps to avoid complaints and frustration.

Discussion Outline

- 1. Background on Energy Star program incentives and how they are supported
- 2. What does it mean to have success with Heat Pumps?
 - 1. Role of Building Envelope
 - 2. HVAC Contractor commissioning process
- 3. Have an outline of what the first skills your staff and trade partners should learn to quickly contribute to heat pump success.
- 4. Top 5 things to communicate to a homeowner about heat pumps to avoid complaints and frustration.

Drivers for Heat Pumps

- Money!
- Compliance
- Benefit (Ratings)
- "In the news"
- Carbon footprint

Money

- Utility Programs
- Tax Credits
- IRA Programs
- Efficiency lending products

Utilities commonly to require "Quality Installation" as minimum or bonus

New Con programs typically aligned with ENERGY STAR, ENERGY STAR NextGen, DOE ZERH, or similar program

25C = Existing Homes

Requires CEE highest, non-advanced tier heat pump CEE recommends full commissioning

45L = New Homes

Requires alignment with ENERGY STAR, ENERGY STAR NextGen, or DOE ZERH Which require Standard 310

HOMES

Modeled savings, typically ENERGY STAR or higher equipment

States recommending or requiring "Quality Installation" **HEAR**

Equipment incentives, requires ENERGY STAR States may choose to require "Quality Installation"

What determines a Quality Install?

ACCA Standard 5

HVAC Quality Installation Specification

Residential and Commercial Heating, Ventilating, and Air Conditioning (HVAC) Applications

ANSUASHRAE Standard 221-2020

Test Method to Field-Measure and Score the Cooling and Heating Performance of an Installed Unitary HVAC System

https://quality-install-tool.pnnl.gov/

ENERGY STAR New Homes

ENERGY STAR Single-Family New Homes National Program Requirements, Version 3.2 (Rev. 13)

Exhibit 1: ENERGY STAR Reference Design Home 10

The ENERGY STAR Reference Design Home is the set of efficiency features modeled to determine the ENERGY STAR ERI Target for each home pursuing certification. Therefore, while the features below are not mandatory, if they are not used then other measures will be needed to achieve the ENERGY STAR ERI Target. In addition, note that the Mandatory Requirements for All Certified Homes, Exhibit 2, contain additional requirements such as total duct leakage limits, minimum allowed insulation levels, and minimum allowed fenestration performance. Therefore, EPA recommends that partners review the documents in Exhibit 2 prior to selecting measures.

Cold Climates (2021 IECC Zones 4C,5,6,7,8) ¹¹
 AC: 14 SEER Heat pump (See Heating Equipment)
V / CFM blower fan efficiency, and Grade III refrigerant charge
ependent on fuel and system type:
 ENERGY STAR gas furnace: 95 AFUE ENERGY STAR gas boiler: 95 AFUE
 ENERGY STAR air-source heat pump; 9.2 HSPF / 16 SEER

ENERGY STAR Single-Family New Homes

National Rater Design Review Checklist, Version 3 / 3.1 / 3.2 (Rev. 13)

lf pu	rsuing Track A - HVAC Grading, com	plete this page. 1			
Home Address:	City:	State:	Permit Da	te:	
1. Partnership Status			Must	Rater ² Verified	N/A ³
1.1 Rater has verified and documented th www.energystar.gov/ResPartnerDirect	nat builder has an ENERGY STAR partnership story. 4	agreement using			- 25
 1.2 Rater has verified and documented th www.energystar.gov/ResPartnerDirect 	nat their company has an ENERGY STAR partr story. 5	nership agreement using			÷
1.3 Rater(s) signing checklists attest that Home Certification Organization (HC	they have completed EPA-recognized training).	and are credentialed by a			3
2. High-Performance Fenestration					
2.1 Specified fenestration meets or exceed	eds 2009 IECC or, for National v3.2, 2021 IECC	C requirements. ^{6,7}			
3. High-Performance Enclosure				1	1
3.1 Specified total building thermal envel	ope UA achieves ≤ 100% of the total UA resulti	ing from the U-factors in 2	009		
4a. Review of ANSI / RESNET / ACC.	A / ICC 310 HVAC Design Report with EN	ERGY STAR Suppleme	nt 11	0 0	
4a.1 HVAC design report compliant with Supplement to Std. 310 for Dwellings	ANSI / RESNET / ACCA / ICC 310, and the Na & Units, collected for records, with no applicate	itional HVAC Design ble Items left blank. 12			4
4a.2 ANSI / RESNET / ACCA / ICC 310	lesign review criteria have been met for applica	able housing type.			2
4a.3 Cooling sizing % is within the coolin	g sizing limit selected by the HVAC designer.				
Rater Name:		Date of Revi	ew:		
Rater Signature:	Rater Company Na	ime:			

ENERGY STAR NextGen Certified Homes

- Must meet ENERGY STAR version appropriate for location
- Must have a Rater perform the National Rater Field Checklist for NextGen Certified Homes

ENERGY STAR NextGen Certified Homes & Apartments National Rater Field Checklist, Version 1.0 (Rev. 0)

Home/Building Address:		City:	State:	Permit Da	ite:	
1. ENERGY STAR Cert	ification Baseline			Must Correct	Rater Verified	N/A
1.1 Home or building certi California Only:	fied under one of the following ENERG Single Family New Homes (SFNH) SFNH National Version 3.2 SFNH California Version 3.4	Y STAR New Construct Multifamily New MFNC Nation	ion programs (check box): <u>Construction (MFNC)</u> nal Version 1.2 mia Version 1.4		a	
2. Dwelling Unit Space	Heating					
2.1 ENERGY STAR certif	ied heat pump(s) installed and sized in	accordance with the HV	AC Design Report.			14
2.1.1 For each air-so are Grade I per	urce heat pumps, blower fan volumetrio r ANSI / RESNET / ACCA Std. 310. 3	c airflow, blower fan wat	t draw, and refrigerant charge			
2.1.2 In CZ 5-8, insta	illed air-source heat pumps are ENERG	GY STAR certified for Co	old Climate.			
2.2 Each heat pump is co 'connected' criteria.	ntrolled by a wifi thermostat or ENERG	Y STAR certified smart	thermostat, or meets EPA's			
2.3 Each air-source heat	pump has two-speed or variable-speed	blower fan & two-speed	f or variable-speed compresso	r. 🔲		

U.S. DOE Zero Energy Ready Home Single Family Homes National Program Requirements Version 2 (Rev. 1)

Exhibit 2: DOE Zero Energy Ready Home Target Home 37

HVAC Equipment ³	8						
	Very Hot & Hot Climates (2021 IECC Climate Zones 1,2) Warm & Mixed Climates (2021 IECC Climate Zones 3, 4A 4B)		ates s 3, 4A,	Cold & Very Cold Climates (2021 IECC Climate Zones 4C, 5,6,7,8)			
Furnace AFUE	80%		CZ3: 92%; CZ4: 95	%	95%		
SEER	18		16		16 (ASHP); 14 (A/C)		
HSPF	HSPF 9.2 9.2		9.2		9.5		
Boiler AFUE	80%		ler AFUE 80% CZ3: 92%; CZ4: 95%		CZ3: 92%; CZ4: 95%		95%
Whole-House Mechanical Ventilation System Efficiency	2.9 cfm/W no heat exchar	nge	2.9 cfm/W no heat exchange		1.2 cfm/W; balanced with heat exchange, 65% ASRE		
HVAC Grading							
Airflow Deviation	on: Grade I, -7.5%	Watt Drav 0.45 W/cfr	w Efficiency: Grade I, m	Refri Grad	igerant Grade (as ap <mark>pl</mark> icable): le III		

DOE Zero Energy Ready Homes

Air Source Heat Pump Operation

Source: DOE Energy Star

Heating Cycle

Cooling Cycle

Selecting Heat Pump can be Over-simplified

Source: FIXR

To heat and cool a 2,000 sq.ft. home in each zone, you need the following sized heat pumps:

Selecting Heat Pump can be Over-simplified

To heat and cool a 2,000 sq.ft. home in each zone, you need the following sized heat pumps:

What Does it Mean to Have Success?

Comparable Operating Cost

Reduce Energy (Carbon) Consumption

Comparable Expected Life / Durability

Systematic Approach Required for Success

- Heat Pumps can help us achieve our goals to deliver comfortable, safe, healthy, efficient and durable homes.
- Success requires that the mechanical system is selected (Manual S, D) to support the load of the home (Man J).
- This means the building envelope, fresh air, ductwork and heat pump need to be commissioned to perform well together

Example Minneapolis House

Example Minneapolis House

Typical Meteorological Year Hours at Temperature in Minneapolis

Ducted Heat Pumps New Construction: HVAC Contractor Process Overview

Standard for Grading the Installation of HVAC Systems

June 23, 2020

Ducted Heat Pump New Construction: HVAC Contractor Process Overview

- Energy Model
 - Estimated Load
- Tight Envelope has Significant Impact

Example Minneapolis House

Let's Size a Heat Pump for Success!

Ti

Retrofit

• 1 Story, ~1500 Sq Ft Home

• 95% Gas Furnace, 2-ton AC

Duct Leakage to

Outside

0%

0%

8%

Benefits of Load Reduction Increase in Colder Climates

Heating / Cooling Loads and Equipment Capacity

Outdoor Temperature (F)

Manual J Load Calc Software

HITEK WRIGHTSOFT

Heating Design Temp = -8F Cooling Design Temp = 88F

Vinter Delta Temp. (°F)	78								
Vinter Building Load (Btuh)									
Vindow Load:	4142								
Vall Load:	19063								
Ceiling Load:	2970								
Door Load:	1435								
loor Load:	2134								
nfiltration Load:	27780								
Building Subtotal	57524								
Ouct Loss:	5955								
lech Ventilation Loss:	0								
OTAL HEATING LOAD	63479								

Manual J and Equivalent Approaches

ACCA Approved

Equivalent – versions may/may not be ACCA Approved

MiTek WRIGHTSOFT

Elite Software

Free Man-J v7 equivalent No low-e, only SHGC

Canadian F280 compliant Not free

European Getting ACCA approved Great for hydronic

Updated Manual S sizing guidance Capacity vs Load

Equipment Type	Heating Size Limit	Cooling Size Limit
Single speed AC	NA	120%
Two Speed AC	NA	125%
SS and TS HPs	120%	120%
Fuel fired furnace/boiler	140%	NA
VCHP = Adv HP Dry Climate	150%	130%
Emergency/Back up ER	175%	NA

Ducted Heat Pump New Construction: HVAC Contractor Process Overview

1. Evaluate the Design

2. Confirm Duct Leakage

3. Confirm System Airflow 4. Check Power Consumption 5. Measure Refrigerant Charge

- Confirmed by Duct
 Leakage Test
- Duct Leakage to Outside has Significant Impact

When Does Duct Leakage Matter?

- The big concern is when there are ducts outside the envelope
- When they are this is a BIG Concern...

MIAMI CASE STUDY – UNCOMFORTABLE HOME

Confirm Manual J Calc Results

Existing system is correctly sized

- almost exactly

MIAMI CASE STUDY- DUCT LEAKAGE TO OUTSIDE

IS LEAKING 380 CFM A BIG DEAL -YES IT IS

How a Bad Duct Impacts the House Load

Ducted Heat Pump New Construction: HVAC Contractor Process Overview

- Confirm system Air Flow with Flow Grid or another method
- Heat Pumps in Heat mode will have Higher Air Flow requirements than Furnaces
- Air Flow impacts how much sensible and latent work is done by the system in cooling mode

Heat Pumps Require Higher Air Flow than Furnaces in Heat Mode

95% Furnace

- 80,000 BTU
- Heat Rise = 35 50 F
- Air flow = 800 cfm
- TESP = 0.8 inH2O
- ~120 cfm/ton

But what if you compared the HP to a furnace + 5ton AC?

5-ton Heat Pump

- Design Heat Rise = 20 30 F (Typically lower than gas furnace)
- Required air flow = 2000 cfm (Typically, requires ~400 cfm/ton)
- ECM motor will try to push 2000 cfm at 5 inH2O.
 - Won't happen.
 - More likely to reach ~1.5 inH2O (or so) which will deliver ~1100 cfm (220 cfm/ton)
 - May hit refrigerant high-pressure limit and shut down heat pump, moving to back-up heat.

System Performance in Cooling Mode Example: The Sensible Heat Ratio Of a Florida House

	Load Cal	culation W	'orkshe	eet			
Outdoor Design Conditions	Location	Outdoor RH%	Outdoor RH% Heating Dry Bulb		Cooling Dry Bulb		
Outdoor Design conditions	Orlando, FL	50	44		93		
Indees Design Conditions	Location	Indoor RH%	Heating Dry Bulb		Heating Dry Bulb Cooling I		
indoor Design Conditions	Johnny's	50		70	7	5	
			(SUI	(SUMMER)		NTER)	
Construction Materials with	U- value	R- value	Hea	t Gain	Heat Loss		
corresponding near Bains	VUIG C	varue	Latent	Sensible	Latent	Sensible	
Internal gains							
People			230				
Appliance				1,800			
ETC.			186				
External Gains							
Walls		13	1,000	4,000		2,000	
Roof		30	2,000	7,500		5,500	
ETC.		13	1,000	5,000		2,000	
windows	.05			7,500		5,000	
Infiltration							
Blower Door			684	1,500		4,200	
Net Totals			5,100	27,300		18,700	
Total Load			32,	,400 BTUs	18,	,700 BTUs	

Is The SHR and SHF Matched? Should They Be?

Finding House SHR

+ Setting AC SHF = Comfort

*Driven by the Man J load & blower door

*Too little indoor airflow

Is The SHR and SHR Matched? Should They Be?

Finding House SHR

+ Setting AC SHF = Comfort

Comfort Efficiency

*Driven by the Man J load & blower door

*Too much indoor airflow

Is The SHR and SHF Matched? Should They Be?

Finding House SHR

+ Setting AC SHF = Comfort

*Driven by the Man J load & blower door

*Perfect indoor airflow

This is why airflow measurement comes first?

Four Accepted Methods Measuring HVAC Air Flow

Residential Air Flow Measurement Recognized by Standard 310 (ANSI/ACCA/RESNET)

- Flow Grid
- Pressure Matching
- Flow Hood

Checklist

Checklist

Static Pressure & Fan Tables

Total External Static Pressure & Fan Table

*always follow OEM recommendations

P1 + P2 = TESP

FURNACE AIRFLOW (CFM) VS. EXTERNAL STATIC PRESSURE (IN. W.C.)										
MODEL	SPEED TAP	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90
*UD040R924K	4 - HIGH - Black 3 - MED - HIGH - Blue	1018 847	1004 832	982 809	950 779	910 7 0	860 697	802 644	763 585	660 517
	1 -LOW - Hed	617	599	575	544	507	463	413	357	294

Make sure you know the fan speed tap you are using!

TrueFlow[®] Grid HVAC Air Flow Measurement

Ducted Heat Pump New Construction: HVAC Contractor Process Overview

 Checking the blower watt draw confirms that the ducts are not too restrictive and that the blower motor is working correctly.

Ensure the refrigerant charge delivers the right superheat and sub-cool temperatures to match the indoor air flow

•

Joe Medosch and I asked our industry friends:

If you were told you only had 30 minutes or less and you have, a smartphone/tablet (w/Apps), a digital manometer and tubing, static pressure probes, a flashlight, a ladder, a roll of paper towels, and a cordless drill/screwdriver, some additional handheld tools...

What tests or assessments would you make to deliver the most value to a home site visit?

This doesn't matter if you are an HVAC tech/installer, Rater, or a builder

What did the folks have to say? ~30 Survey Responses

Special thanks to:

Bruce Manclark Tim Portman Steve Rogers Dustin Coles Bill Spohn Corbett Lunsford Ed Janowiak Jim Bergmann **Billy Spohn**

Michael Housh Kim DeVoe Chris Conway **Russ King Rick Hall** Adam Mufich **Rob Minnick** Stephen Rardon **Casey Phillips**

Bill Fisher Cody Brasseal Tim DeStasio Ben Baca Alex Meaney Kenneth Budka Chris Hughes Sam Myers Shawn LeMons James Jackson

What is TESP?

Total External Static Pressure

High Static Pressure with an ECM

	Table 10. A	nnual ener	gy <mark>simu</mark> l	ation resu	lts for bot	h homes	- haadi	ne using the	Austin contr	actor's designs
	Home	Duct type	Blower type	Total Pressure (in. w.c.)	Airflow rate (CFM)	Cooling (kWh)	AHU Fans (kWh)	Total Electricity (kWh)	Heating (×10 ⁶ Btu)	Total Gas Consumption (×10 ⁶ Btu)
With a high				0.50"	1200	619	542	8108	60.95	88.88
TESD fan			PSC	0.80"	964	661	531	8139	60.93	88.85
ILSF, Iall		171		1.10"	622	786	600	8331	63.71	91.70
energy	Chicago	Flex		0.50"	1200	611	319	7878	61.55	89.51
			ECM	0.80"	1162	614	411	7972	60.47	88.39
goes up	3-ton AC			1.10"	1103	631	478	8056	60.86	88.78
	Gas lumace			0.50"	1200	611	531	8086	59.52	87.41
	1200 CFM nominal		PSC	0.80"	964	656	525	8128	60.25	88.16
		Matel		1.10"	622	769	583	8300	62.17	90.12
		Metal		0.50"	1200	603	314	7861	60.10	88.02
		1			1A.	- 1 A				117

measureQuick workflows – manual entry or readings with the app!

Guided Workflow Tutorials w/ Joe: Installation - Part 1

Announcing measureQuick 2.5

After 6 months of development and 3 months of beta testing, measureQuick 2.5 is finally released to the public.

measureQuick 2.5 is our most powerful and user-friendly version of measureQuick yet. With our new Guided Workflows, improved Bluetooth connectivity, ACCA VEO Certificates, and mQ Cloud updates, measureQuick 2.5 will help HVAC professionals improve their efficiency and profitability like never before.

New Features in mQ2.5

Guided Workflows

Guided Workflows are step-by-step instructions for completing common tasks, such as performing a maintenance check-up or installing a new system. Each Guided Workflow includes helpful pictures and instructions, as well as action items and next steps that must be completed before moving on.

Guided Workflows are a game-changer for HVAC professionals of all experience levels. They can help you complete tasks quickly and efficiently, reduce the risk of errors, and improve the quality of your work.

https://measurequick.com/solving-our-labor-endemic/

Introducing New Roles to Revitalize the HVAC Industry

measureQuick proposes two pivotal roles for the industry:

Tech-Efficiency Specialists (TES)

Advanced Residential Commissioning Specialists (ARCS).

These roles are designed to address the immediate needs of the market while complementing the current workforce. Union or non-union workers, these professionals are desperately needed.

Turning this into job descriptions

Tech-Efficiency Specialists (TES)

Could easily be a Rater or Builder!

TES experts are at the forefront of enhancing homeowners' heating and cooling experiences. They bridge the gap between homeowners and contractors, focusing on system efficiency and sustainability.

They advocate for energy-efficient solutions, playing a key role in transforming maintenance into an opportunity for system improvement and profitable installations. Advanced Residential Commissioning Specialists (ARCS) Most likely HVAC tech or Rater

ARCS ensure newly installed HVAC systems are finely tuned to design specifications. Their work is crucial in validating system performance and efficiency.

ARCS are responsible for duct leakage testing, precise evacuation, airflow adjustment, and accurately setting the refrigerant charge. They ensure peak system efficiency, contributing significantly to system longevity and reliability.

National Comfort Institute

Who should attend?

HVAC Contractors, Salespeople, and Managers

Grow Profitably with Air Upgrades Online Live Overview

Agenda

Section 1: Why Airflowa Upgrades are Critically Important

- Why do I need profitable growth?
- What is an Airflow Upgrade?
- Why are Airflow Upgrades so important?

Section 2: How Airflow Upgrades Improve Business Profitability

- How can a 5-minute test generate leads?
- How do Airflow Upgrades improve business?
- · How do I add this to my business?

Upon completion, you will receive a digital Implementation Quick Reference Guide with step-by-step instructions to assist in the successful integration of this powerful approach into your business. As bonus, you'll also receive NCI's Total External Static Pressure Test Procedure.

Grow Profitably with Airflow Upgrades Online Live

Contractor Price: \$95 49*

*In response to the COVID-19 Pandemic this class is available for a limited time at a discounted rate for qualified HVAC professionals.

Top 5 Items to Communicate to Homeowners

Proper sizing, selection, and *air flow* lead to longer run times...

- 1. Longer run times means better destratification
- 2. Longer run times means better dehumidification
- 3. Longer run times means less temperature swings
- 4. Longer run times means better filtration
- 5. Longer run times means your heat pump runs at most efficient speed

This is WHY we do a comfort consultation/energy audit with existing homes and why we commission new systems!

Heat Pump Resources

PUMP UP THE AIR FLOW Get Your Heat Pumps Commissioned

Dan Wildenhaus

Senior Technical Manager - Training and Consulting Services, Center for Energy & Environment

Bill Graber Partner, The Energy Conservatory